
Report — Memory Allocation

150001937

October 20, 2017

1 Setup

1.1 Directory Structure

This submission includes:

• This report as report.pdf.

• A C source file implementing myalloc and myfree, as myalloc.c.

1.2 Building/Running

1.2.1 Running Stacscheck Tests

The code submitted should be compiled for Stacscheck tests using the Makefile provided by the specification.

1.2.2 Building in Debugging Mode

Compiling myalloc.c with MYALLOC DEBUG defined will cause debugging messages to be output to stderr when
running.

1.2.3 Doxygen Documentation Generation

Doxygen documentation can be generated for this submission by running the command:

/bin/bash myalloc.c

The “homepage” file generated is ./docs/myalloc 8c.html.

2 Overview

In this practical I was tasked with implementing custom versions of stdlib.h’s malloc and free, named myalloc

and myfree respectively. The functions should utilise a free-list and coalescing of adjacent free space.

3 Design Decisions

This section will follow the order in myalloc.c.

3.1 Embedded bash Script

Doxygen is a popular documentation generator that is also installed on the lab machines. However, by default it
is not set up for generation of C code: it requires a Doxyfile listing requested configurations. The specification
states that only two files should be submitted, so a Doxyfile is not an option. The solution decided upon was to
embed a bash script in myalloc.c, that pipes configuration options as text into doxygen through stdin.
This solution relies on a few details:

1



Figure 1: Graphical Representation of Metadata Structure

• All content within #if 0 ... #endif is always removed by the C preprocessor 1, so the bash script does not
interfere with the C code.

• C preprocessor directives are treated as comments by bash, since they start with a hash (#).

• bash is interpreted, and stops reading the script once it is told to exit. This means all C code after the script
is ignored by bash.

• Doxygen can be explicitly given a file to use as a config instead of a Doxyfile, and can accept stdin as a
suitable file.

3.2 Doxygen Documentation

Doxygen was used to document myalloc.c. Documentation generation is explained in section 1.2.3, and uses the
embedded bash script discussed in section 3.1. Although documentation for static items is uncommon, it was
included to ensure that all items were explained, at least in a high-level fashion.

3.3 Metadata Stucture

Metadata is stored in two separate structs: headers and flnodes. Separate structs are used since compiler
optimisations may rearrange the contents of structs — this would be problematic if persistent and non-persistent
struct members swapped positions.

3.3.1 The header

headers are designed to store persistent data about the headed memory space — that is, data that is true after
allocating memory and getting it back via myfree. Currently, only a memory block’s size is stored in a header.
Regardless, it is a struct for two reasons:

1. To promote padding of the header by the compiler, for word-alignment.

2. To allow easy addition of other properties to the header, should this code be later updated.

3.3.2 The flnode

flnodes (short for free-list node) are used to store data that is not persistent. flnodes are part of the memory
space that is given in an allocation request, in an attempt to minimise memory wasted by metadata. Since flnodes
are the part of metadata that stores the references to next and previous members of a free-list, they are also the
part that said references refer to.

1In fact, the Vim C syntax highlighting installed on the lab machines highlights all text within the clause as a comment, so using
#if 0 must be a common enough trick.

2



3.4 Free-list

The free-list is implemented as a non-looped doubly-linked list of flnodes, sorted by address (least-to-greatest).
The choice to sort the free-list was made after considering the pros and cons:

• Contiguous nodes will be adjacent in the list.

• Footers are not required to detect contiguous nodes: these nodes would be adjacent in the free-list.

+ Not having footers saves on space.

• There is no need to look ahead or behind.

+ This reduces the risk of illegal memory accesses.

+ “Dummy” headers/footers are avoided, saving more space.

+ The list does not have to be searched though to find contiguous nodes, saving on time.

– Adding items to the list takes linear time, instead of the constant time of unsorted lists.

• During development, it was found that later calls to mmap return pages lower in address space.

+ If the free-list is sorted in ascending order, these pages are added to the very start of the list, mitigating
the linear search time to the best-case constant-time scenario.

– This optimisation is implementation-specific; doing the same on a system that returns pages with
increasing addresses would give a worst-case scenario!

+ The free-list is kept small by immediately coalescing all new nodes added to the list.

Throughout the decision-making process, decisions were made to optimise for space over time or complexity. The
decision to sort the list instead of using footers reflects this.

3.5 Prototyping

Function prototypes were added later into development — functions still only rely on functions defined before them.
The prototypes were added as a place for documentation, mimicking the contents of a header file.

3.6 Debugging Mode

Function Unique Pattern
node before “efo”
is contiguous “==”
stitch “stit”
split “spl”
remove node “rem”
add node “ddi”
unmap excess pages “ves”
more memory “ask”
myfree “ed!”
debug print list “|”, “tem”

Table 1: “grep” patterns for given debug
messages.

If myalloc.c is compiled with MYALLOC DEBUG defined (most likely
through a compiler’s -D flag) it will print debug messages to stderr

while working. Without this flag, myalloc.c does not depend on
stdio.h.
The debugging output can be quite voluminous. For this reason, each
kind of debug message was given a unique pattern, so that a log or
output can be filtered using a tool such as grep.

3.7 get header, get node and end of header

These simple functions were written to avoid repeating the same
pointer arithmetic throughout the file.

3.8 last node

This function is not used in the final implementation, but was originally
used to find the final item in the free-list and compare it to what was
perceived to be the end of the list.

3.9 first enough space

This function is not used in the final implementation but has been
included in the submission for completion’s sake.

3



3.10 smallest enough space

A simple best-fit algorithm was chosen over a first-fit algorithm to reduce wasted space due to defragmentation, at
the cost of time.

3.11 Unmapping Unused Pages

Excess pages contained entirely in the free-list are unmapped using munmap. This feature was given high priority
during development for two reasons:

1. To create as small a footprint as possible (this is related to the aim to waste as little memory as possible).

2. To keep the free-list as short as possible2, to reduce the effect of the linear node addition time.

3.12 Just-In-Time Page Acquisition

The implementation only asks for as many pages as it needs at a time. This method was chosen because, while
it may cause extra overhead due to extra calls to mmap, it keeps the footprint of the implementation as small as
possible. However, one detail that has not been tested is the fact that mapping several pages at once may reduce
fragmentation, since the pages would be adjacent. Investigating this would be the next step in improving this
submission.

3.13 Conclusion

For an attempt at a space-conservative implementation of malloc, I personally think I did quite well: I achieved
the basic specification, while making design decisions that impacted my implementation’s memory footprint.
Given more time, I would investigate ways to prevent defragmentation, in an attempt to further reduce memory
wastage. I would investigate the importance of adjacent pages (as mentioned in section 3.12), and I would try to
make a “smarter” memory block selection algorithm, improving on the currently-implemented best-fit.

References

[1] Kazim Terzic. Miscellaneous Lectures for CS3014.
https://studres.cs.st-andrews.ac.uk/CS3104/Lectures/ (available only to staff and students of University
of St Andrews Computer Science Department)

[2] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic Storage Allocation: A Survey
and Critical Review. Department of Computer Sciences, University of Texas at Austin, Austin, Texas, 78751,
USA.

[3] Jennifer Rexford. Optimizing Dynamic Memory Management
https://www.cs.princeton.edu/courses/archive/spr11/cos217/lectures/20DynamicMemory2.pdf

2In reality it is highly use-specific as to whether or not unmapping pages shortens the free-list: if a node contains a whole page, but
with remainder space on both sides of the page, then the free-list actually becomes longer as both sides need keeping track of.

4


